P P SAVANI UNIVERSITY

Seventh Semester of B. Tech. Examination

December 2021

SECH4050 Modeling, Simulation & CAD in Chemical Engineering

15.12.2021, Wednesday Time: 09:00 a.m. To 11:30 p.m. Maximum Marks: 60 Instructions: 1. The question paper comprises of two sections. 2. Section I and II must be attempted in separate answer sheets. 3. Make suitable assumptions and draw neat figures wherever required. 4. Use of scientific calculator is allowed. SECTION - I Q-1(a) Define: Dynamics, Variables, Feedback control, Feedforward control, Stability. [05] Q-1 (b) State limitations of chemical process simulation. [05] Q-2(a) Explain the types of model in detail. [05] Q-2 (b) Give an account of the process matrix method in terms of recycle. [05] Q-3 (a) Explain different types of feed arrangement of multiple effect evaporators and state the [07] pressure and temperature relation of each effect in detail. Explain: Information flow diagram. Q-3(b) [03] OR Explain the steps of the following matrix method with process matrix method. [05] a. The process matrix method b. The stream connection matrix method c. The incidence matrix method d. The adjacency matrix method Q-3(b) Explain the steps to convert information flow diagram to process flow diagram. [05] SECTION - II Derive a mass balance equation on solvent free basis for an absorber used to separate a Q-1 binary gaseous mixture with a liquid solvent. Prove a mass balance equation for a single stage mixer-settler system used to separate 0-1 [10] binary mixtures with a solvent. Q-2(a) Explain the modelling of fluidized bed reactor. [05] Q-2 (b) Write in detail about non-adiabatic reactors. [05] Q-3 (a) Explain one of the two classes of reactions. [04] Q-3 (b) Solve mass and energy balance on a mixing vessel with reaction.

[06]

P P SAVANI UNIVERSITY

Seventh Semester of B. Tech. Examination

December 2021

SECH4050 Modeling, Simulation & CAD in Chemical Engineering

15.12.2021, Wednesday Time: 09:00 a.m. To 11:30 p.m. Maximum Marks: 60

Instructions:

1. The question paper comprises of two sections.

Section I and II must be attempted in separate answer sheets.
 Make suitable assumptions and draw neat figures wherever required.

4. Use of scientific calculator is allowed.

Q - 1 (a)	Define: Dynamics, Variables, Feedback control, Feedforward control, Stability.	[05]
Q-1(b)	Explain the uses of process simulators in chemical industry.	[05]
Q-2(a)	Derive Fick's Law from equation of continuity.	[06]
Q-2(b)	Explain recycle in the process matrix method.	[04]
Q - 3 (a)	Explain Mathematical Modelling Of Single Effect Evaporator.	[07]
Q-3(b)	Explain the steps to convert information flow diagram to process flow diagram. \mathbf{OR}	[03]
Q-3(a)	State the approach of Transport phenomena models and also explain subtypes of transport phenomenon model.	[06]
Q-3(b)	Write any two steps of the general strategy of analysis of complex processes. SECTION - II	[04]
Q-1	Design a multi stage distillation column used for separating binary component. Following designing section must be included:	[10]
	a. Feed tray b. Rectifying section c. Stripping Section.	
	OR	
Q-1	Derive a mass balance equation for a single stage mixer-settler system used to separate binary mixtures with a solvent.	[10]
Q-2(a)	Solve mass and energy balance on a mixing vessel without reaction.	[05]
Q - 2 (b)	Derive a mass balance equation on solvent free basis for an absorber used to separate a binary gaseous mixture with a liquid solvent.	[05]
Q-3(a)	Explain non adiabatic reactors in detail.	[05]
Q - 3 (b)	Develop the model for fluidized bed reactor.	[05]
